Solving Linear Matrix Equations by Matrix Decompositions

نویسندگان

  • Yongxin Yuan
  • Kezheng Zuo
چکیده

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided. Keywords—Matrix equation, Generalized inverse, Generalized singular-value decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for solving the first-order linear matrix differential equations

Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...

متن کامل

On the solving matrix equations by using the spectral representation

‎The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation‎. ‎We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A‎, ‎X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$‎, ‎which $X$ is unknown matrix‎. ‎Also‎, ‎we suggest the new method for solving quadratic matri...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

SOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX

This paper analyzes a linear system of equations when the righthandside is a fuzzy vector and the coefficient matrix is a crisp M-matrix. Thefuzzy linear system (FLS) is converted to the equivalent crisp system withcoefficient matrix of dimension 2n × 2n. However, solving this crisp system isdifficult for large n because of dimensionality problems . It is shown that thisdifficulty may be avoide...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015